4.1 Maximum and Minimum Values

Learning Objectives: After completing this section, we should be able to

• find absolute extrema and local extrema of a function via its derivative.

Here are some questions we are trying to answer:

- How many items should a manufacturer make to
- What trajectory of an object
- What position gives

Here are some informal definitions. See the textbook for the formal definition if you are interested. The point (c, f(c)) is a:

• local maximum if

• local minimum if

• absolute max or global max if

• absolute min or global min if

There are some fringe cases

Theorem (Extreme Value Theorem). If f(x) is continuous on a closed interval [a, b], then

Note: Local minimums and maximums must be

Fact: A local extrema can only occur at x

Definition. If c is an interior point in our domain; i.e., a < c < b, then c is a

Question. True or false: If f'(c) = 0 or does not exist, then there must be a local max or min at x = c.

Question. True or false: If a local max or min occurs at x = c, then f'(c) = 0 or does not exist.

Question. True or false: Maximums or minimums only occur at critical values.

Fact: If f(x) is continuous on [a, b], then

Example. Let $f(x) = e^x \sin(x)$ on [-2, 7]. Find the absolute maximum and minimum.

We need to be careful with our terminology.

 $\rightarrow t$

4.2 The Mean Value Theorem

Learning Objectives: After completing this section, we should be able to

• use the Mean Value Theorem and apply it to prove other results.

Example. Suppose you are driving on a highway. You note that you have travelled 100 miles in the last 2 hours. What do you know about your instantaneous velocity at any point on the trip?

distance at t hours

At some point,

Example. Let f(x) = |x|. Note f(-1) = 1 and f(2) = 2.

Example. Let $f(x) = \sqrt{x}$. Note f(0) = 0 and f(4) = 2.

Example. Suppose f is continuous on [a, b] and

Example. In Iowa, there are marks on the interstate highway every 0.1 miles visible to an airplane or helicopter. The speed limit on the interstate is 70 mph. A police helicopter notices that a car crosses one mark and then 4.8 seconds later the car crosses the next mark. Will the driver get a speeding ticket?

4.3 Derivatives and Shapes of Graphs

Learning Objectives: After completing this section, we should be able to

- find the intervals of increase and decrease of a function using the first derivative of the function.
- find the intervals of concavity of a function using the second derivative of the function.

4.3.1 First Derivative

Definition. Increasing/Decreasing

- If f'(x) > 0 on
- If f'(x) < 0 on

Example.

Fact: The only places f changes from increasing to decreasing

The first derivative test for local extrema: If f(x) is continuous on [a, b] and differentiable on (a, b) except

- If f'(x) changes
- If f'(x) changes
- If f'(x) doesn't change

Example. Let $f(x) = 2x^3 + 3x^2 - 12x + 1$. Find all local extrema.

You try!

Example. Let $f(x) = 3x^5 - 20x^3$. Find all local extrema.

Example. Let $f(x) = x^2 - 2\ln(x)$. Find all local extrema.

4.3.2 Second Derivative

Consider the second derivative:

Definition. If f'(x) is increasing, then f is

Definition. If f'(x) is decreasing, then f is

Definition. If f changes concavity at x = c, then

Example. Determine the intervals of concavity for $f(x) = x^4 - 2x^3 + 1$.

Example Continued.

You try!

Example. Find the intervals of concavity and the inflection points for $f(x) = 2x^4 + 8x^3 + 12x^2 - x - 2$.

Second derivative test for local extrema: What can you say about extrema when f(x) is concave up? Down?

Second derivative test: Suppose (c, f(c)) is a critical point. Then,

- If f''(c) > 0, then
- If f''(c) < 0, then
- If f''(c) = 0, then

Example. From before: Let $f(x) = 2x^3 + 3x^2 - 12x + 1$. Use the second derivative test to find extrema.

You try!

Example. Let $f(x) = 2x^2 \ln(x) - 11x^2$. Find all local extrema using the second derivative test.

Question. Should you use the first derivative test or the second derivative test?

4.4 Indeterminate Forms and L'Hopital's Rule

Learning Objectives: After completing this section, we should be able to

• apply L'Hopital's Rule to evaluate the limit of an expression in an indeterminate form.

Recall that

Remember, when talking about indeterminate forms,

Theorem (L'Hopital's Rule). If $\lim_{x\to c} \frac{f(x)}{g(x)}$ is

Important!

- This is not
- Only applies

Example. $\lim_{x \to \infty} \frac{x+1}{x^2-5}$

Example. $\lim_{x \to 0} \frac{\sin(x)}{x}$

You try!

Example. $\lim_{x \to 0} \frac{\sin(7x)}{4x}$

You try!

Example. $\lim_{x \to \infty} \frac{3x^2 + 2x - 1}{8x^2 + 100}$

Example. $\lim_{x \to 0} \frac{x-2}{x^2+4}$

Example. $\lim_{x \to 0} \frac{x \sin(x)}{1 - \cos(x)}$

Example. $\lim_{x \to \infty} \frac{\ln(x)}{2\sqrt{x}}$

You try!

Example. $\lim_{x \to \infty} \frac{x}{(\ln(x))^2}$

What about other indeterminate forms?

Consider the indeterminate form $0\cdot\infty$:

- Need to
- Note:

Example. $\lim_{x\to 0^+} x \ln(x)$

You try!

Example. $\lim_{x \to \infty} e^{-x} x^2$

Example. $\lim_{x \to \frac{\pi}{2}^{-}} \left(\frac{\pi}{2} - x\right) \tan(x)$

4.7 Optimization Problems

Learning Objectives: After completing this section, we should be able to

- convert an optimization problem in words into a mathematical optimization problem.
- solve an optimization problem.

Now that we have tools to find extrema, we can use them to solve real-world problems!

Example. Suppose x and y are 2 numbers. Find these two positive numbers satisfying the equation xy = 3 and the sum x + 2y is as small as possible.

Example. A rectangular pen is being built against the side of a barn. There is 1000 m of fencing available. What dimensions of the pen maximize the area of the pen?

Example. A rancher is building 2 adjacent, rectangular pens against a barn, each with an area of 50 m^2 . What are the dimensions of each pen that minimize the amount of fence that must be used?

4.9 Antiderivatives

Learning Objectives: After completing this section, we should be able to

• find antiderivatives of given functions.

We've spent the majority of the semester taking derivatives. How do we undo taking a derivative?

Definition. An **antiderivative** of f(x) is

They are not unique!

Example. $\frac{d}{dx}(2x^3+4) = 6x^2$.

Antiderivatives come in in a 1-parameter family.

Notation:

Example.
$$\int 6x^2 dx = 2x^3 + C$$

Let's find antiderivatives for basic functions.

1. Powers

Example. $\int x^5 dx$

2. Constant Multiple Rule

Example. $\int 6x^2 dx$

3. Sum Rule

Example.
$$\int (6x^2 + x^5) dx$$

4. Trig Rules

•
$$\int \cos(x) dx$$

- $\int \sin(x) dx$
- $\int \sec^2(x) dx$
- $\int \csc^2(x) dx$
- $\int \sec(x) \tan(x) dx$

•
$$\int \csc(x) \cot(x) dx$$

5. Inverse Trig

•
$$\int \frac{1}{1+x^2} dx$$

•
$$\int \frac{1}{\sqrt{1-x^2}} dx$$

•
$$\int -\frac{1}{\sqrt{1-x^2}}dx$$

6. Logs and Exponentials

7. Constant Chains

Example. $\int \left(x + 14 - \sqrt{x^3} + 3x^{-6} - \frac{2}{x} + \cos(4x) - \sec^2(6x)/8 + \frac{1}{3}e^{-x} - \frac{4}{1+x^2} + \pi^x \right) dx$